Identification and characterization of two amino acids critical for the substrate inhibition of human dehydroepiandrosterone sulfotransferase (SULT2A1).

نویسندگان

  • Lu-Yi Lu
  • Yin-Cheng Hsieh
  • Ming-Yih Liu
  • Yih-Hung Lin
  • Chun-Jung Chen
  • Yuh-Shyong Yang
چکیده

Substrate inhibition is a characteristic feature of many cytosolic sulfotransferases. The differences between the complex structures of SULT2A1/DHEA and SULT2A1/PAP or SULT2A1/ADT (Protein Data Bank codes are 1J99, 1EFH, and 1OV4, respectively) have enabled us to elucidate the specific amino acids responsible for substrate inhibition. Based on the structural analyses, substitution of the smaller residue alanine for Tyr-238 (Y238A) significantly increases the K(i) value for dehydroepiandrosterone (DHEA) and totally eliminates substrate inhibition for androsterone (ADT). In addition, Met-137 was proposed to regulate the binding orientations of DHEA and ADT in SULT2A1. Complete elimination or regeneration of substrate inhibition for SULT2A1 with DHEA or ADT as substrate, respectively, was demonstrated with the mutations of Met-137 on Y238A mutant. Analysis of the Met-137 mutants and Met-137/Tyr-238 double mutants uncovered the relationship between substrate binding orientations and inhibition in SULT2A1. Our data indicate that, in the substrate inhibition mode, Tyr-238 regulates the release of bound substrate, and Met-137 controls substrate binding orientation of DHEA and ADT in SULT2A1. The proposed substrate inhibition mechanism is further confirmed by the crystal structures of SULT2A1 mutants at Met-137. We propose that both substrate binding orientations exhibited substrate inhibition. In addition, a corresponding residue in other cytosolic sulfotransferases was shown to have a function similar to that of Tyr-238 in SULT2A1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor.

Dehydroepiandrosterone sulfotransferase (SULT2A1) is a cytosolic enzyme that mediates sulfo-conjugation of endogenous hydroxysteroids (dehydroepiandrosterone, testosterone, bile acids), and diverse xenobiotic compounds. Upon sulfonation, SULT2A1 substrates become polar and water-soluble and thus suitable for rapid excretion. SULT2A1 is abundantly expressed in the liver and intestine. Recent evi...

متن کامل

Dmd058479 1684..1689

The nuclear receptor liver X receptor (LXR) plays an important role in the metabolism and homeostasis of cholesterol, lipids, bile acids, and steroid hormones. In this study, we uncovered a function of LXRa (NR1H3) in regulating the human hydroxysteroid sulfotransferase SULT2A1, a phase II conjugating enzyme known to sulfonate bile acids, hydroxysteroid dehydroepiandrosterone, and related andro...

متن کامل

A SULT2A1 genetic variant identified by GWAS as associated with low serum DHEAS does not impact on the actual DHEA/DHEAS ratio

DHEA is the major precursor of human sex steroid synthesis and is inactivated via sulfonation to DHEAS. A previous genome-wide association study related the single nucleotide polymorphism (SNP) rs2637125, located near the coding region of DHEA sulfotransferase, SULT2A1, to serum DHEAS concentrations. However, the functional relevance of this SNP with regard to DHEA sulfonation is unknown. Using...

متن کامل

Enantioselectivity of human hydroxysteroid sulfotransferase ST2A3 with naphthyl-1-ethanols.

Hydroxysteroid (alcohol) sulfotransferases catalyze the sulfation of several endogenous steroids and many hydrophobic xenobiotic alcohols. The substrate stereoselectivities of sulfotransferases may be critically important in determining their overall roles in metabolism of drugs, carcinogens, and other xenobiotics. In the present work, stereoselectivity of the human hydroxysteroid sulfotransfer...

متن کامل

Suppression of DHEA sulfotransferase (Sult2A1) during the acute-phase response.

The acute-phase response (APR) induces alterations in lipid metabolism, and our data suggest that this is associated with suppression of type II nuclear hormone receptors that are key regulators of fatty acid, cholesterol, and bile acid metabolism. Recently, the farnesoid X receptor (FXR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) were found to regulate DHEA sulfotra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 73 3  شماره 

صفحات  -

تاریخ انتشار 2008